Nutritional status, genetic susceptibility, and insulin resistance–important precedents to atherosclerosis

Type Article

Journal Article


F. C. McGillicuddy; H. M. Roche

Year of publication



Mol Nutr Food Res








Atherosclerosis is a progressive disease that starts early in life and is manifested clinically as coronary artery disease (CAD), cerebrovascular disease, or peripheral artery disease. CAD remains the leading cause of morbidity and mortality in Western society despite the great advances made in understanding its underlying pathophysiology. The key risk factors associated with CAD include hypercholesterolemia, hypertension, poor diet, obesity, age, male gender, smoking, and physical inactivity. Genetics also play an important role that may interact with environmental factors, including diet, nutritional status, and physiological parameters. Furthermore, certain chronic inflammatory conditions also predispose to the development of CAD. The spiraling increase in obesity rates worldwide has made it more pertinent than ever before to understand the metabolic perturbations that link over nutrition to enhanced cardiovascular risk. Great breakthroughs have been made at the pharmacological level to manage CAD; statins and aspirin have revolutionized treatment of CAD and prolonged lifespan. Nonetheless, lifestyle intervention prior to clinical presentation of CAD symptoms would negate/delay the need for chronic pharmacotherapy in at-risk individuals which in turn would relieve healthcare systems of a costly burden. Throughout this review, we debate the relative impact of nutrition versus genetics in driving CAD. We will investigate how overnutrition affects adipose tissue biology and drives IR and will discuss the subsequent implications for the cardiovascular system. Furthermore, we will discuss how lifestyle interventions including diet modification and weight loss can improve both IR and metabolic dyslipidemia that is associated with obesity. We will conclude by delving into the concept that nutritional status interacts with genetic susceptibility, such that perhaps a more personalized nutrition approach may be more effective in determining diet-related risk as well as response to nutritional interventions.